Math 255B Lecture 26 Notes

Daniel Raban

March 11, 2020

1 Weyl's Criterion and Weyl's Theorem

1.1 Weyl's criterion

Last time, we had $\operatorname{Spec}(S) = \operatorname{Spec}_d(A) \sqcup \operatorname{Spec}_{\operatorname{ess}}(A)$, where $\operatorname{Spec}_d(A)$ is the set of isolated eigenvalues of A of finite multiplicity.

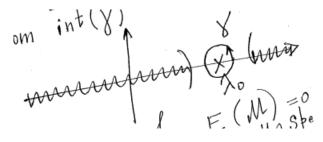
Proposition 1.1 (Weyl's criterion). $\lambda \in \text{Spec}_{ess}(A)$ if and only if there exists a sequence $u_n \in D(A)$ with $||u_n|| = 1$, such that $u_n \to 0$ weakly and $||(A - \lambda)u_n|| \to 0$.

Such a sequence is called a Weyl sequence.

Lemma 1.1. Let λ be an isolated point of Spec(A). Then λ_0 is an eigenvalue, and

$$E(\{\lambda_0\}) = \frac{1}{2\pi i} \int_{\gamma} (z - A)^{-1} dz,$$

where γ is a small circle centered at λ_0 with $\operatorname{Spec}(A) \setminus \{\lambda\}$ away from $\operatorname{int}(\gamma)$.



Proof. E(M) = 0 if $M \cap \text{Spec}(A) = \emptyset$. For all small enough $\varepsilon > 0$, we have

$$0 \neq E((\lambda_0 - \varepsilon, \lambda_0 + \varepsilon)) = E(\{\lambda_0\}),$$

so λ_0 is an eigenvalue. Compute

$$\frac{1}{2\pi i} \int_{\gamma} \langle (z-A)^{-1} u, u \rangle \, dz = \frac{1}{2\pi i} \int_{\gamma} \int \frac{1}{z-\lambda} \, d\langle E_{\lambda} u, u \rangle \, dz$$

$$= \int \left(\frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - \lambda} dz\right) d\langle E_{\lambda} u, u \rangle$$

The part in the parentheses equals 1 if $\lambda \in int(\gamma)$ and 0 if $\lambda \notin int(\gamma)$.

$$= \int \mathbb{1}_{\operatorname{int}(\gamma)\cap\mathbb{R}}(\lambda) d\langle E_{\lambda}u, u \rangle$$
$$= \langle E(\{\lambda_0\})u, u \rangle$$
$$= \langle E(\operatorname{int}(\gamma))u, u \rangle.$$

Now we can prove Weyl's criterion.

Proof. (\Leftarrow): Assume that there is a sequence $u_n \in D(A)$ with $||u_n|| = 1$, such that $u_n \to 0$ weakly and $||(A - \lambda)u_n|| \to 0$. Then $\lambda \in \text{Spec}(A)$. Assume that $\lambda \in \text{Spec}_d(A)$. Then, using

$$(z - A)u_n = (\lambda - A)u_n) + (z - \lambda)u_n,$$

we have

$$(z-A)^{-1}u_n = \frac{1}{z-\lambda}u_n - (z-A)^{-1}\frac{1}{z-\lambda}(\lambda - A)u_n$$

Integrate over γ to get

$$E(\{\lambda\})u_n = u_n - \underbrace{\frac{1}{2\pi i} \int_{\gamma} (z-A)^{-1} (z-\lambda)^{-1} (\lambda-A)u_n \, dz}_{\to 0 \text{ in } \mathcal{H}}.$$

We get that $||E({\lambda})u_n - u_n|| \to 0$. $E({\lambda})$ is finite rank, so it is compact. Therefore, $E({\lambda})u_n \to 0$, which contradicts the fact that $||u_n|| = 1$.

 (\Longrightarrow) : Let $\lambda \in \operatorname{Spec}_{\operatorname{ess}}(A)$. We claim that for all $\varepsilon > 0$, dim $E((\lambda - \varepsilon, \lambda + \varepsilon))\mathcal{H} = \infty$. Indeed, assume that dim $E(I)\mathcal{H} < \infty$ for some $I = (\lambda - \varepsilon, \lambda + \varepsilon)$. Then write

$$\mathcal{H} = E(I)\mathcal{H} \oplus E(I^c)\mathcal{H},$$

which is a closed, orthogonal direct sum. This composition reduces A, and $\operatorname{Spec}(A|_{E(I)\mathcal{H}}) \cap I \neq \emptyset$. Hence, $\operatorname{Spec}(A) \cap I = \operatorname{Spec}(A|_{E(I)\mathcal{H}})$, which is finite, of finite multiplicity. So $\lambda \in \operatorname{Spec}_d(A)$.

If dim $E(\{\lambda\})\mathcal{H} = \infty$ (λ is an eigenvalue of ∞ multiplicity), we let $u_n \in E(\{\lambda\})\mathcal{H}$ be an orthonormal sequence. In general, we can find a sequence $\varepsilon_n \downarrow 0$ such that

$$P_n = E((\lambda - \varepsilon_n, \lambda - \varepsilon_{n+1}) \cup (\lambda + \varepsilon_{n+1}, \lambda - \varepsilon_n)) \neq 0, \qquad P_n P_m = 0, \quad n \neq m.$$

It suffices to take $u_n \in P_n \mathcal{H}$ of norm 1.

1.2 Weyl's theorem

Theorem 1.1 (Weyl). Let A, B be self-adjoint, bounded from below, and such that for some $c \in \mathbb{R}$, $(A + c)^{-1} - (B + c)^{-1}$ is compact. Then $\operatorname{Spec}_{ess}(A) = \operatorname{Spec}_{ess}(B)$.

Proof. We check that $\operatorname{Spec}_{\operatorname{ess}}(A) \subseteq \operatorname{Spec}_{\operatorname{ess}}(B)$. Let $\lambda \in \operatorname{Spec}_{\operatorname{ess}}(A)$, let u_n be a Weyl sequence for A at λ , and let $v_n = (B+c)^{-1}(A+c)u_n \in D(B)$. Write $(B+c)^{-1} = (A+c)^{-1} + K$, where K is compact. Then

$$v_n = u_n + K(A + c)u_n$$

= $u_n + \underbrace{K(A - \lambda)u_n}_{\to 0} + \underbrace{K\underbrace{(\lambda + c)u_n}_{\to 0 \text{ weakly}}}_{\to 0}$

So $||v_n|| \ge 1/2$ for all large *n*. Hence, $w_n = \frac{v_n}{||v_n||} \in D(B)$, $w_n \to 0$ weakly, and $(B - \lambda)w_n \to 0$ since

$$(B - \lambda)v_n) = (B + c)v_n - (-\lambda - c)v_n$$

= $(A + c)u_n - (\lambda + c)v_n$
= $\underbrace{(A - \lambda)u_n}_{\to 0} - (\lambda + c)\underbrace{(v_n - u_n)}_{\to 0}$.

1.3 Applications

Example 1.1. Consider $P_0 = -\Delta$ on \mathbb{R}^n , and let $P = P_0 + q$ with $q \in C(\mathbb{R}^n; \mathbb{R})$ such that $q \to 0$ as $|x| \to \infty$. P and P_0 are self-adjoint with $D(P) = D(P_0) = H^2(\mathbb{R}^n)$, and let us check that $(P+c)^{-1} - (P_0+c)^{-1}$ is compact:

Let us write $(P+x)u = (P_0+c)u+qu$ and replace $u \in H^2$ by $(P_0+c)^{-1}u$ for $u \in H^2(\mathbb{R}^n)$. Then $u \in L^2$ with

$$(P+c)(P_0+c)^{-1}u = u + q(P_0+c)^{-1}u.$$

Apply $(P+c)^{-1}$ to get

$$(P_0 + c)^{-1}u = (P + c)^{-1}u + (P + c)^{-1}q(P_0 + c)^{-1}u.$$

We get the resolvent identity

$$(P+c)^{-1} - (P_0+c)^{-1} = -(P+c)^{-1}q(P_0+c)^{-1}.$$

Let us check that $q(P_0 + c)^{-1} : L^2 \to L^2$ is compact: Approximating q by a sequence $q_j \in \overline{C_0}$ (uniformly), we may assume that $q \in C_0(\mathbb{R})$. If $\chi \in C_0^{\infty}(\mathbb{R}^n)$ with $\chi q = q$, we get

$$q(P_0 + c)^{-1} = q(\chi(P_0 + c)^{-1}) : L^2 \to H^2 \cap \mathcal{E}(\operatorname{supp}(\chi)) \to L^2,$$

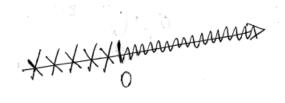
where the second map is compact. We get

$$\operatorname{Spec}_{\operatorname{ess}}(P) = \operatorname{Spec}_{\operatorname{ess}}(P_0) = [-\infty),$$

 \mathbf{SO}

 $\operatorname{Spec}(P) = [0, \infty) \cup \{ \text{negative eigenvalues} \},\$

where negative eigenvalues may only accumulate at 0.



If q is rapidly decreasing at ∞ , then $\operatorname{Spec}(P) \cap (-\infty)$ is finite and

of negative eigenvalues
$$\leq C_n \int |q|^{n/2} dx$$
.

For $n \geq 3$, this is the Cwikel-Lieb-Rozenblum estimate (1972-1977). Observe that there are no negative eigenvalues if q is small.

Example 1.2. Let $P = -\Delta + q$ with $q \in C(\mathbb{R}^n)$ and $q \ge 0$. Let $\eta = \liminf_{|x|\to\infty} q(x) \in [0,\infty]$. We claim that $\inf \operatorname{Spec}_{\operatorname{ess}}(P) \ge \eta$ (Spec(P) is discrete in $(0,\eta)$). We may assume that $\eta < \infty$. Let

$$A = -\Delta + \max(q, \eta), \qquad B = q - \max(q, \eta) \in C(\mathbb{R}^n).$$

Then $B(x) \to 0$ as $|x| \to +\infty$. We get that $B(A+c)^{-1}$ is compact on L^2 , since $(A+c)^{-1}(L^2) \subseteq H^1(\mathbb{R}^n)$. Thus,

$$\operatorname{Spec}_{\operatorname{ess}}(\underbrace{-\Delta+q}_{=A+B}) = \operatorname{Spec}_{\operatorname{ess}}(A) \subseteq \operatorname{Spec}(A) \subseteq [\eta, \infty).$$